The Resistor Color Code

Resistor values are normally shown using colored bands.
Each color represents a number as shown in the table.
Most resistors show 4 bands:

- The first band gives the first digit.
- The second band gives the second digit.
- The third band indicates the number of zeros.
- The fourth band is used to show the tolerance (precision) of the resistor. In particular:
silver $\pm 10 \%, \quad$ gold $\pm 5 \%, \quad$ red $\pm 2 \%, \quad$ brown $\pm 1 \%$.

Example:

Colour	Number
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	8
White	9

This resistor has the following bands:

$$
\begin{aligned}
& \text { red }(\rightarrow 2), \\
& \text { violet }(\rightarrow 7) \text {, } \\
& \text { yellow }(\rightarrow 4 \text { zeros }) \\
& \text { gold }(\rightarrow 5 \%)
\end{aligned}
$$

So its value is $270000 \Omega=270 \mathrm{k} \Omega(5 \%)$.
Metal-film precision resistors use a four-digit code printed on the resistor body, rather than the ordinary color-banding scheme. The first three digits denote a value, and the last digit is the "number of zeros" multiplier (note that the color bands work the same way, but with only three digits altogether). For example, 1693 denotes a 169k resistor, and 1000 denotes a 100Ω resistor. Many capacitors types use this same printed number scheme.

Color code for small value resistors (less than 10Ω).

The standard color code cannot show values of less than 10Ω. To show these small values two special colors are used for the third band: gold which means $\times 0.1$ and silver which means $\times 0.01$. The first and second bands represent the digits as normal. For example:
red, violet, gold bands represent $27 \times 0.1=2.7 \Omega$
green, blue, silver bands represent $56 \times 0.01=0.56 \Omega$

Tolerance of resistors (fourth band of color code).

The tolerance of a resistor is shown by the fourth band of the color code. Tolerance is the precision of the resistor and it is given as a percentage. For example a 390Ω resistor with a tolerance of $\pm 10 \%$ will have a value within 10% of 390Ω, between $390-39=351 \Omega$ and $390+39=429 \Omega(39$ is 10% of 390$)$. If no fourth band is shown the tolerance is $\pm 20 \%$.
A special color code is used for the fourth band tolerance:
silver $\pm 10 \%$, gold $\pm 5 \%$, red $\pm 2 \%$, brown $\pm 1 \%$.

A summary of the colored bands meaning is reported below.

