SDLS940A - MARCH 1974 - REVISED MARCH 1988

'90A, 'LS90 . . . Decade Counters

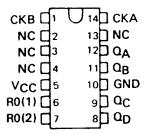
'92A, 'LS92 . . . Divide By-Twelve Counters

'93A, 'LS93 . . . 4-Bit Binary Counters

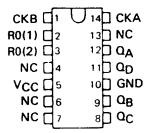
T1/050	TYPICAL
TYPES	POWER DISSIPATION
'90A	145 mW
'92A, '93A	130 mW
'LS90, 'LS92, 'LS93	45 mW

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.

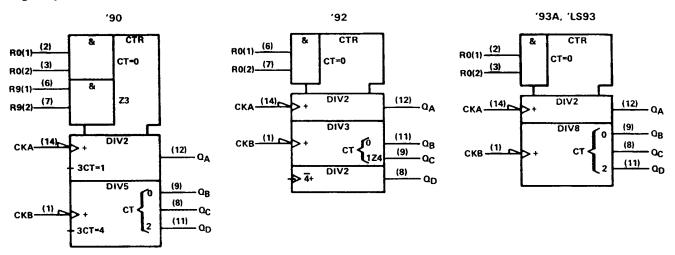

All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the Ω_A output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'LS90 counters by connecting the Ω_D output to the CKA input and applying the input count to the CKB input which gives a divide-by-ten square wave at output Ω_A .


SN5490A, SN54LS90 . . . J OR W PACKAGE
SN7490A . . . N PACKAGE
SN74LS90 . . . D OR N PACKAGE
(TOP VIEW)

CKB 1 14 CKA
R0(1) 2 13 NC
R0(2) 3 12 0A

SN5492A, SN54LS92...J OR W PACKAGE SN7492A...N PACKAGE SN74LS92...D OR N PACKAGE (TOP VIEW)



SN5493A, SN54LS93 . . . J OR W PACKAGE SN7493 . . . N PACKAGE SN74LS93 . . . D OR N PACKAGE (TOP VIEW)

SDLS940A - MARCH 1974 - REVISED MARCH 1988

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SDLS940A - MARCH 1974 - REVISED MARCH 1988

'90A, 'LS90 BCD COUNT SEQUENCE

(See Note A)

COUNT		OUT	PUT	
COON	ap	α_{C}	Oβ	QA
0	L	L	L	٦
1	L	L	L	н
2	L	L	н	L
3	L	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	н	Н	L
7	L	н	Н	н
8	н	L	L	L
9	Н	L	L	н

'92A, 'LS92 COUNT SEQUENCE

(See Note C)

COUNT		OUT	PUT	
COONT	a_{D}	α_{C}	α_{B}	Q _A
0	L	L.	L	٦
1	L	L	L	Н
2	L	L	Н	L
3	L	L	н	н
4	L	Н	L	L
5	L	Н	L	Н
6	н	Ł	L	L
7	н	L	L	н
8	н	L	Н	L
9	н	L	Н	н
10	н	Н	L	L
11	н	Н	L	Н

'92A, 'LS92, '93A, 'LS93 RESET/COUNT FUNCTION TABLE

RESET	INPUTS		OUT	PUT							
R ₀₍₁₎	R ₀₍₂₎	α _D	$\mathbf{a}_{\mathbf{C}}$	σ_{B}	QA						
Н	Н	L	L	L	L						
L	×										
×	L	COUNT									

NOTES: A. Output $\Omega_{\mbox{\scriptsize A}}$ is connected to input CKB for BCD count.

- B. Output \mathbf{Q}_{D} is connected to input CKA for bi-quinary count.
- C. Output Q_A is connected to input CKB.
- D. H = high level, L = low level, X = irrelevant

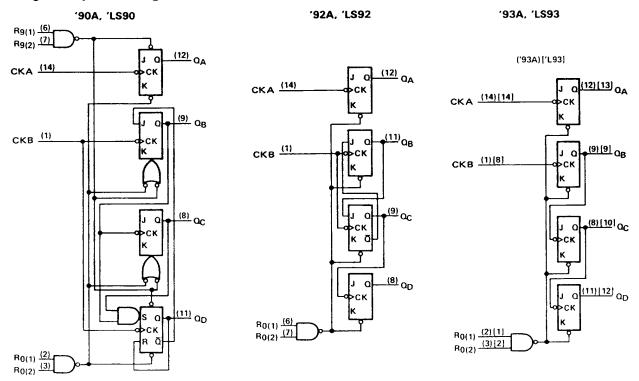
'90A, 'LS90 BI-QUINARY (5-2) (See Note B)

COUNT		OUT	PUT	
COOMI	QA	α _D	ac	σB
0	L	L	L	٦
1	L	L	L	Н
2	L	L	н	L
3	L	L	Н	н
4	L	Н	L	L
5	н	L	L	L
6	н	L	L	н
7	н	L	Н	L
8	н	L	Н	H
9	н	н	L	L

'90A, 'LS90 RESET/COUNT FUNCTION TABLE

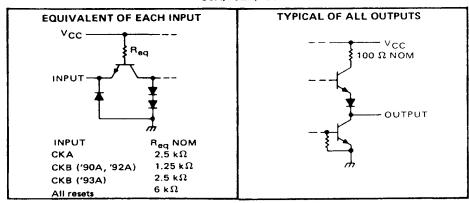
1	RESET	INPUTS	3	OUTPUT								
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R9(2)	σ_{D}	αc	ОB	QA					
Н	Н	L	X	L	L	L	L					
н	H	×	L	L	L	L	L					
X	×	н	н	н	L	L	Н					
X	L	×	L									
L	×	L	Х	COUNT								
L	×	×	L	COUNT								
×	L	L	х	COUNT								

'93A, 'LS93 COUNT SEQUENCE


(See Note C)

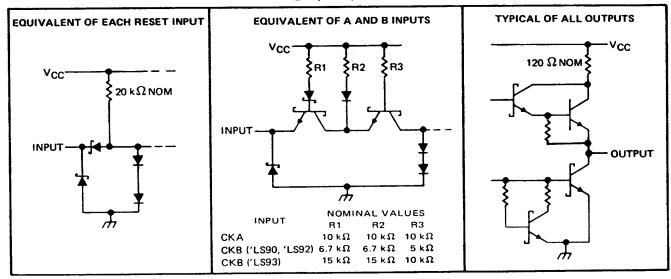
,	366 1	OIA (
COUNT		ουτ	PUT	
COOK	QD	$\mathbf{a}_{\mathbf{C}}$	QB	QA
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	Н	L
7	L	Н	Н	Н
8	н	L	L	L
9	н	L	L	Н
10	н	L	Н	L
11	н	L	Н	Н
12	н	н	L	L
13	н	н	L	Н
14	н	н	Н	L
15	н	н	Н	Н

SDLS940A – MARCH 1974 – REVISED MARCH 1988


logic diagrams (positive logic)

The J and K inputs shown without connection are for reference only and are functionally at a high level. Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in () are for the 54L93.

schematics of inputs and outputs


'90A, '92A, '93A

SDLS940A - MARCH 1974 - REVISED MARCH 1988

schematics of inputs and outputs (continued)

'LS90, 'LS92, 'LS93

SDLS940A - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)							 				. 7V
Input voltage							 				. 5.5 V
Interemitter voltage (see Note 2)							 				. 5.5 V
Operating free-air temperature range:	SN5490A	, SN54	92A,	SN5493/	۹.		 			-55°C	to 125°C
Sportating was an assupersal as 3	SN7490A	. SN74	92A.	SN7493	۹.		 			. 0°	C to 70°C
Storage temperature range							 	•		–65°C	to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R₀ inputs, and for the '90A circuit, it also applies between the two R₉ inputs.

recommended operating conditions

		SN549	OA, SN	5492A	SN749	0A, SN	7492A		
			SN5493	A		SN7493.	A	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH				-800			-800	μΑ	
Low-level output current, IQL				16			16	mA	
Count frequency, f _{count} (see Figure 1)	A input	0		32	0		32	MHz	
	8 input	0		16	0		16	141112	
	A input	15			15				
Pulse width, tw	8 input	30			30			ns	
•	Reset inputs	15			15				
Reset inactive-state setup time, t _{su}		25			25			ns	
Operating free-air temperature, TA		-55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				′90A			'92A			'93A		UNIT
	PARAMETER ¶	TEST CONDITIONS†	MIN	TYP#	MAX	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	ONT
VIH	High-level input voltage		2			2			2			V
VIL	Low-level input voltage				0.8			0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5			-1.5			-1.5	V
	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 µ ^A	2.4	3.4		2.4	3.4		2.4	3.4		V
VOL	Low-level output voltage	VCC = MIN, VIH = 2 V,		0.2	0.4		0.2	0.4		0.2	0.4	V
1,	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1			1			1	mA
	Any reset				40			40			40	_
ЧН	High-level CK A	$V_{CC} = MAX, V_1 = 2.4 V$			80			80			80	μΑ
-111	input current CKB	1 00			120			120			80	1
	Any rese				-1.6			-1.6			-1.6	
1	Low-level CKA	$V_{CC} = MAX, V_1 = 0.4 V$			-3.2			-3.2			-3.2	mA
וונ	input current CKB	1	 		-4.8			-4.8			-3.2	
	Short-circuit	SN54'	-20		-57	-20		-57	-20		-57	^
los	output current §	VCC = MAX SN74'	-18		-57	-18		-57	-18		-57	mA_
¹cc	Supply current	V _{CC} = MAX, See Note 3		29	42		26	39		26	39	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$.

SNot more than one output should be shorted at a time.

QA outputs are tested at IOL = 16 mA plus the limit value for IIL for the CKB input. This permits driving the CKB input while maintaining

SDLS940A - MARCH 1974 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	FROM	то			'90A			'92A			'93A		UNIT
PARAMETER [†]	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	OIVII
	CKA	QA		32	42		32	42		32	42		MHz
f _{max}	СКВ	QB		16			16			16			2
tPLH	CKA				10	16		10	16		10	16	ns
tPHL .		QΑ			12	18		12	18		12	18	
tPLH		0			32	48		32	48	<u> </u>	46	70	ns
tPHL	CKA	σ_{D}			34	50		34	50		46	70	
tPLH .	0.45	_	CL = 15 pF,		10	16		10	16		10	16	ns
tPHL	СКВ	α _B	RL = 400 Ω,		14	21		14	21		14	21	
tPLH			See Figure 1		21	32		10	16		21	32	ns
tPHL	СКВ	αc			23	35		14	21		23	35	
tPLH			1		21	32		21	32		34	51	ns
tPHL	СКВ	σD			23	35		23	35		34	51	
tPHL	Set-to-0	Any	1		26	40		26	40	L	26	40	ns
tPLH .		Q _A , Q _D	1		20	30							ns
tPHL	Set-to-9	Q _B , Q _C	1		26	40				<u> </u>			

 $^{^{\}dagger}f_{max} = maximum count frequency$

tpLH ≡ propagation delay time, low-to-high-level output

tpHL ≡ propagation delay time, high-to-low-level output

SDLS940A – MARCH 1974 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)												. 7 V
Input voltage: R inputs							. ,					7 V
A and B inputs												5.5 V
Operating free-air temperature range: SN54LS' Circuit	s									-55	C to	125°C
SN74LS' Circuit	s									. •	o°C	to 70°C
Storage temperature range										-65	C to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS SN54LS SN54LS	92	SN74LS90 SN74LS92 SN74LS93			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	l	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mA
Count fraguency 6 /con Figure 11	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	B input	0		16	0		16	MHZ
	A input	15			15			
Pulse width, tw	B input	30			30			ns
	Reset inputs				30			1
Reset inactive-state setup time, t _{su}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]			SN54LS90 SN54LS92			SN74LS90 SN74LS92			UNIT	
							TYP‡	MAX	MIN	TYP‡	MAX	
VIH High-level input voltage					2			2			V	
VIL	VIL Low-level input voltage							0.7			0.8	٧
VIK	Input clamp vo	Itage	V _{CC} = MIN,	$I_1 = -18 \text{ mA}$				-1.5			-1.5	٧
Vон	OH High-level output voltage		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μ/	Ą	2.5	3.4		2.7	3.4		v
VOL Low-level outp	1 and land and		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
	Low-level outp	ow-level output voltage			10L = 8 mA¶					0.35	0.5	ľ
	Input current	Any reset	V _{CC} = MAX,	V1 = 7 V				0.1			0.1	
11	at maximum	CKA	V _{CC} = MAX,	V _I = 5.5 V				0.2			0,2	mA
	input voltage	СКВ						0.4			0.4	1
	High-level	Any reset		V _I = 2.7 V				20			20	
чн	_	CKA	VCC = MAX,					40			40	μА
	input current	СКВ					80			80		
	Low-level	Any reset						-0.4			-0.4	
11L		CKA	V _{CC} = MAX,	= MAX, V _I = 0.4 V				-2.4			-2.4	mA
input curr	input current	CKB						-3.2			-3.2	<u> </u>
los	OS Short-circuit output current§		VCC = MAX			-20		-100	-20		-100	mA
	Cupalit aussans		V	Con Note 2	'LS90		9	15		9	15	
ICC Supply current			V _{CC} = MAX,	See Note 3	'LS92		9	15		9	15	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4,5 V, and all other inputs grounded.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IOL plus the limit value of IIL for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

SDLS940A - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TECT CONDITIONS					S	N54LS9	3	S				
	PARAMET	ER	TEST CONDITIONS†			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level inpu	t voltage				2			2			٧
VIL								0.7			8.0	٧
VIK	Input clamp vo	Itage	VCC = MIN,	l ₁ = -18 mA				-1.5			-1.5	٧
V _{OH}	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, 1 _{OH} = -400 μA	λ.	2.5	3.4		2.7	3.4		٧
	VOL Low-level output v		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	v
VOL		ut voltage	VIL = VIL max		IOL = 8 mA¶					0.35	0.5	ı v
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Ц	at maximum input voltage	CKA or CKB	V _{CC} = MAX,	V1 = 5.5 V				0.2			0.2	
	High-level	Any reset		V _{CC} = MAX, V _I = 2.7 V				20			20	μА
ЧH	input current	CKA or CKB	VCC = MAX,					40			80	μΑ
		Any reset		V _I = 0.4 V				-0.4			-0.4	
IL	Low-level	CKA	V _{CC} = MAX,					-2.4			-2.4	mA
	input current	СКВ						-1.6			-1.6	
los	Short-circuit or	utput current §	V _{CC} = MAX			-20		-100	-20		-100	mA
Icc			V _{CC} = MAX,	See Note 3			9	15		9	15	mA

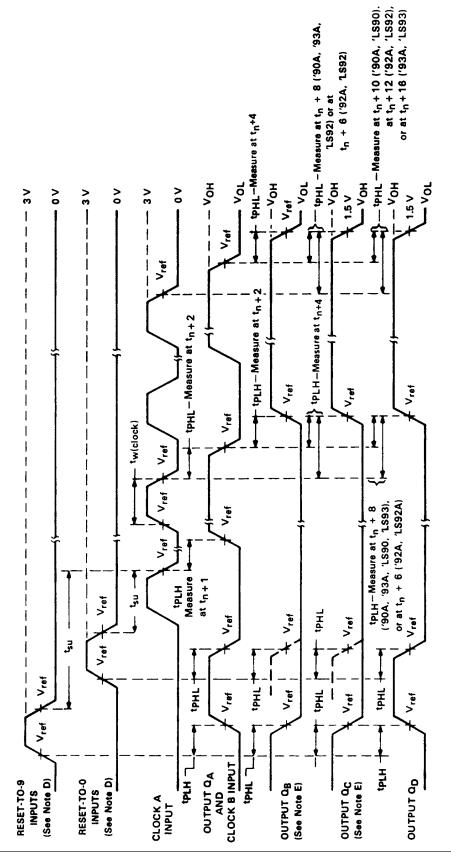
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER#	FROM	TO			LS90			LS92			'LS93		UNIT		
	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
f _{max}	CKA	QΑ		32	42		32	42		32	42		MHz		
	CKB	QB	1	16			16			16					
tPLH		0	1		10	16		10	16		10	16	ns		
tPHL .	CKA	QΑ			12	18		12	18		12	18			
tPLH	01/4	CKA	0-			32	48		32	48		46	70	ns	
tPHL .	CNA	a_{D}			34	50		34	50		46	70			
tPLH			246		CL = 15 pF,		10	16		10	16		10	16	ns
tPHL	CKB	α_{B}	R _L = 2 kΩ		14	21		14	21		14	21			
¹PLH	СКВ	СКВ	0	See Figure 1		21	32		10	16		21	32	ns	
tPHL.			ac			23	35		14	21		23	35		
tPLH					21	32		21	32		34	51	ns		
1PHL	CKB	σD			23	35		23	35		34	51			
†PHL	Set-to-0	Any			26	40		26	40		26	40	ns		
^t PLH	Set-to-9	Q _A , Q _D	1		20	30							ns		
^t PHL		QB, QC	1		26	40									

[#]fmax = maximum count frequency

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IQL plus the limit value for IIL for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

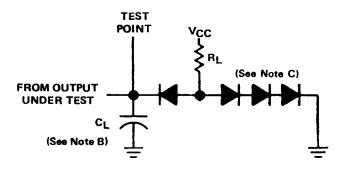
 $tp_{LH} = propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output

NOTES: A. Input pulses are supplied by a generator having the following characteristics:

for 'LS90, 'LS92, 'LS93, $t_f \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms. for '90A, '92A, '93A, $t_f \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms;

- CL includes probe and jig capacitance. All diodes are 1N3064 or equivalent.
- Each reset input is tested separately with the other reset at 4.5 V. Bi Ci Ci ui ui
 - Reference waveforms are shown with dashed lines.
- For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V}$. For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3 \text{ V}$.


FIGURE 1A

PARAMETER MEASUREMENT INFORMATION

SDLS940A - MARCH 1974 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $z_{out} \approx 50$ ohms; for 'LS90, 'LS92, 'LS93, $t_r \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $z_{out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. Each reset input is tested separately with the other reset at $4.5\ V.$
 - E. Reference waveforms are shown with dashed lines.
 - F. For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V}$. For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3 \text{ V}$.

FIGURE 1B

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated