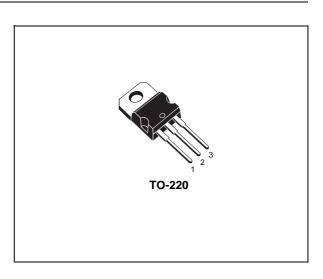


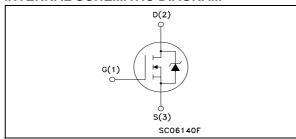
IRF540

N-CHANNEL 100V - 0.055 Ω - 22A TO-220 LOW GATE CHARGE STripFET™ II POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D	
IRF540	100 V	<0.077 Ω	22 A	


- TYPICAL $R_{DS}(on) = 0.055\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- LOW GATE CHARGE
- APPLICATION ORIENTED CHARACTERIZATION

DESCRIPTION


This MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
- UPS AND MOTOR CONTROL

INTERNAL SCHEMATIC DIAGRAM

Ordering Information

SALES TYPE	MARKING	PACKAGE	PACKAGING
IRF540	IRF540&	TO-220	TUBE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	100	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
V _{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	22	A
I _D	Drain Current (continuous) at T _C = 100°C	15	А
I _{DM} (•)	Drain Current (pulsed)	88	A
P _{tot}	Total Dissipation at T _C = 25°C	85	W
	Derating Factor	0.57	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	9	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	220	mJ
T _{stg}	Storage Temperature	-55 to 175	°C
Tj	Max. Operating Junction Temperature	-55 to 175	

^(•) Pulse width limited by safe operating area.

¹⁾ $I_{SD} \le 22A$, $di/dt \le 300A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$ (2) Starting $T_j = 25$ °C, $I_D = 12A$, $V_{DD} = 30V$

THERMAL DATA

Rthj-ca Rthj-a T _I		Max Max Typ	1.76 62.5 300	°C/W °C	
-------------------------------------	--	-------------------	---------------------	------------	--

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	100			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 11 A		0.055	0.077	Ω

DYNAMIC

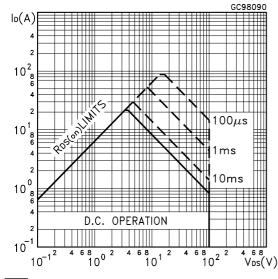
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} = 25 \text{ V}$ $I_{D} = 11 \text{ A}$		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		870 125 52		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

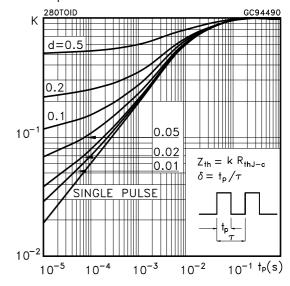
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{ccc} V_{DD} = 50 \text{ V} & I_D = 12 \text{ A} \\ R_G = 4.7 \; \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{array}$		60 45		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 80 V I _D = 22 A V _{GS} = 10V		30 6 10	41	nC nC nC

SWITCHING OFF

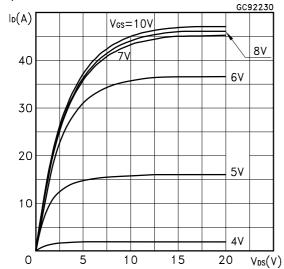

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time Fall Time	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		50 20		ns ns

SOURCE DRAIN DIODE

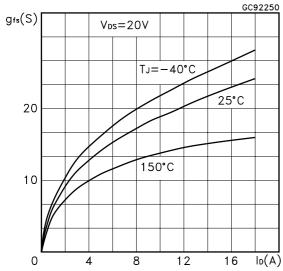

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				22 88	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 22 A V _{GS} = 0			1.3	V
t _{rr} Q _{rr} IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} = 22 & A & \text{di/dt} = 100 \text{A/} \mu \text{s} \\ V_{DD} = 30 & V & T_j = 150 ^{\circ} \text{C} \\ \text{(see test circuit, Figure 5)} \end{split}$		100 375 7.5		ns nC A

^(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. (•)Pulse width limited by safe operating area.

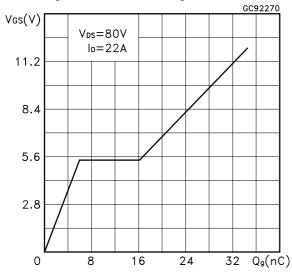
Safe Operating Area

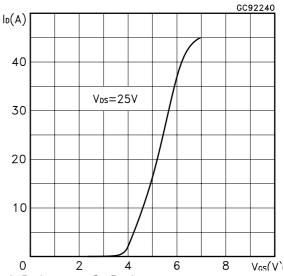


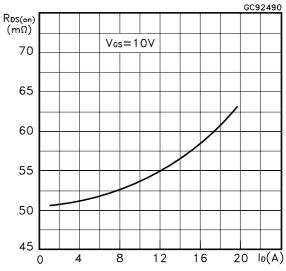
Thermal Impedance

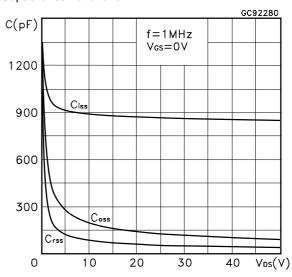


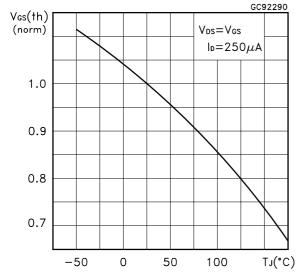
4

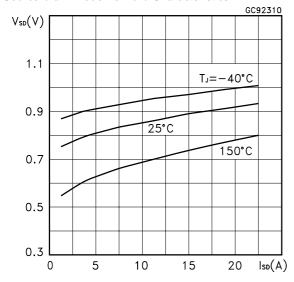

Output Characteristics

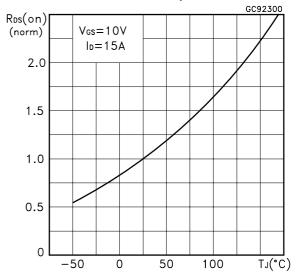

Transconductance


Gate Charge vs Gate-source Voltage


Transfer Characteristics


Static Drain-source On Resistance


Capacitance Variations


Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature

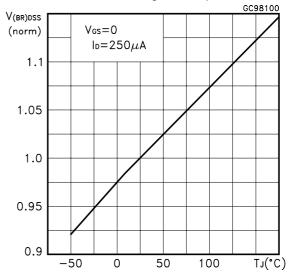


Fig. 1: Unclamped Inductive Load Test Circuit

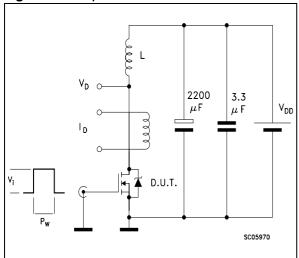
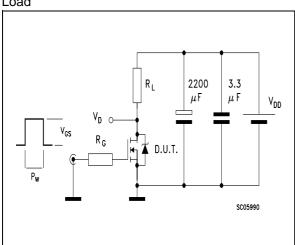



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

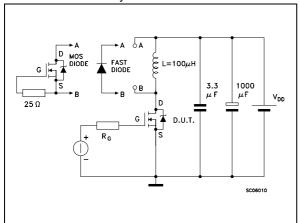


Fig. 2: Unclamped Inductive Waveform

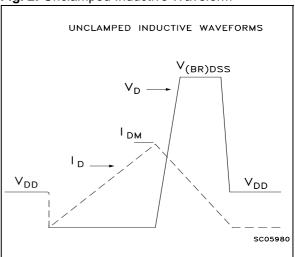
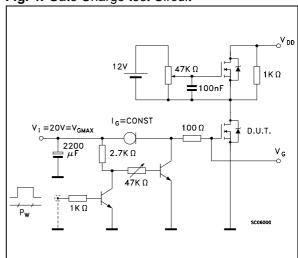
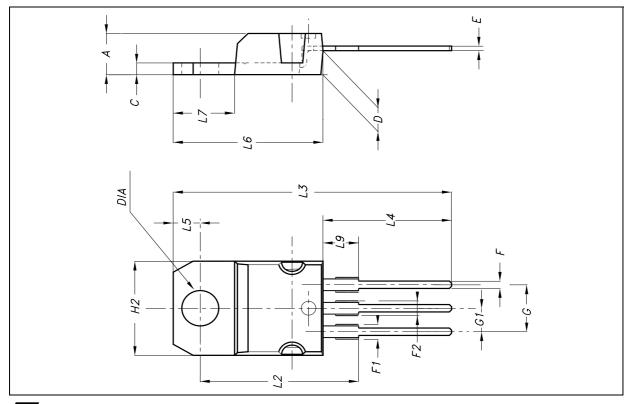




Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM.		mm.			inch.	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.
Α	4.4		4.6	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.40		2.70	0.094		0.106
H2	10		10.40	0.393		0.409
L2		16.40			0.645	
L3		28.90			1.137	
L4	13		14	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
DIA	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com